University Librarian Centre | University of Cagliari
UniCA Eprints

Electronic devices and systems for monitoring of diabetes and cardiovascular diseases

Angius, Gianmarco (2009) Electronic devices and systems for monitoring of diabetes and cardiovascular diseases. [Doctoral Thesis]

[img]
Preview
PDF
9Mb

Abstract

Diabetes is a serious chronic disease which causes a high rate of morbidity and mortality all over the world. In 2007, more than 246 million people suffered from diabetes worldwide and unfortunately the incidence of diabetes is increasing at alarming rates. The number of people with diabetes is expected to double within the next 25 years due to a combination of population ageing, unhealthy diets, obesity and sedentary lifestyles. It can lead to blindness, heart disease, stroke, kidney failure, amputations and nerve damage. In women, diabetes can cause problems during pregnancy and make it more likely for the baby to be born with birth defects. Moreover, statistical analysis shows that 75% of diabetic patients die prematurely of cardiovascular disease (CVD). The absolute risk of cardiovascular disease in patients with type 1 (insulin-dependent) diabetes is lower than that in patients with type 2 (non-insulin-dependent) diabetes, in part because of their younger age and the lower prevalence of CVD risk factors, and in part because of the different pathophysiology of the two diseases. Unfortunately, about 9 out of 10 people with diabetes have type 2 diabetes. For these reasons, cardiopathes and diabetic patients need to be frequently monitored and in some cases they could easily perform at home the requested physiological measurements (i.e. glycemia, heart rate, blood pressure, body weight, and so on) sending the measured data to the care staff in the hospital. Several researches have been presented over the last years to address these issues by means of digital communication systems. The largest part of such works uses a PC or complex hardware/software systems for this purpose. Beyond the cost of such systems, it should be noted that they can be quite accessible by relatively young people but the same does not hold for elderly patients more accustomed to traditional equipments for personal entertainment such as TV sets. Wearable devices can permit continuous cardiovascular monitoring both in clinical settings and at home. Benefits may be realized in the diagnosis and treatment of a number of major 15 diseases. In conjunction with appropriate alarm algorithms, they can increase surveillance capabilities for CVD catastrophe for high-risk subjects. Moreover, they could play an important role in the wireless surveillance of people during hazardous operations (military, fire-fighting, etc.) or during sport activities. For patients with chronic cardiovascular disease, such as heart failure, home monitoring employing wearable device and tele-home care systems may detect exacerbations in very early stages or at dangerous levels that necessitate an emergency room visit and an immediate hospital admission. Taking into account mains principles for the design of good wearable devices and friendly tele-home care systems, such as safety, compactness, motion and other disturbance rejection, data storage and transmission, low power consumption, no direct doctor supervision, it is imperative that these systems are easy to use and comfortable to wear for long periods of time. The aim of this work is to develop an easy to use tele-home care system for diabetes and cardiovascular monitoring, well exploitable even by elderly people, which are the main target of a telemedicine system, and wearable devices for long term measuring of some parameters related to sleep apnoea, heart attack, atrial fibrillation and deep vein thrombosis. Since set-top boxes for Digital Video Broadcast Terrestrial (DVB-T) are in simple computers with their Operating System, a Java Virtual Machine, a modem for the uplink connection and a set of standard ports for the interfacing with external devices, elderly, diabetics and cardiopathes could easily send their self-made exam to the care staff placed elsewhere. The wearable devices developed are based on the well known photopletysmographic method which uses a led source/detector pair applied on the skin in order to obtain a biomedical signal related to the volume and percentage of oxygen in blood. Such devices investigate the possibility to obtain more information to those usually obtained by this technique (heart rate and percentage of oxygen saturation) in order to discover new algorithms for the continuous and remote or in ambulatory monitoring and screening of sleep apnoea, heart attack, atrial fibrillation and deep vein thrombosis.

Item Type:Doctoral Thesis
Date:26 February 2009
Tutor:Raffo, Luigi
PhD classes:Ciclo 21 > Ingegneria elettronica e informatica
Institution:Universita' degli Studi di Cagliari
Divisions:Dipartimenti (fino a dicembre 2011) > Dipartimento di Ingegneria elettrica ed elettronica
Subjects:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Uncontrolled Keywords:electronic devices, wearable devices, remote monitoring, CVD, diabetes, DVB-T, tele-home care
ID Code:481
Deposited On:13 Dec 2009 00:57

Repository Staff Only: item control page